Fast semi-supervised segmentation of in situ tree color images

Philippe Borianne ${ }^{1}$
Gérard Subsol ${ }^{2}$

${ }^{1}$ AMAP - CIRAD, Montpellier, France philippe.borianne@cirad.fr
${ }^{2}$ LIRMM - CNRS, University Montpellier 2, France gerard.subsol@lirmm.fr

Context

- Regular diagnosis of urban trees to assess their health and... potential risk
- By visually looking to discontinuities in shape and density
- Based on digital photographs taken in situ

Winn, M.F., Araman, P.A., Lee, S.M. "Urban Crowns: an assessment and monitoring tool for urban trees", Gen. Tech. Rep., U.S. Dept. of Agriculture, Forest Service, (2011)

Context

\rightarrow Segmenting a tree in natural color images

Some solutions?

- By making some hypotheses about the tree structure

Too complex scene?

(a)

(b)

(c)

(d)

Teng, C.H., Chen Y.S., Hsu, W.H. "Tree segmentation from an Image". In: IAPR Machine Vision Appl., 59-63 (2005)

- By asking the operator to tag different tree parts

Friedland, G., Jantz, K., Rojas, R.: "SIOX: simple interactive object extraction in still images". In: 7th IEEE International Symposium on Multimedia (2005)

Too heterogeneous background?

Proposed method

1. Reduce the color dynamic range with a quick algorithm.
2. The operator quickly and roughly tags some parts of the image which become learning areas (LA) for the labeling process...
...which will then classify all the pixels of the image.
3. A post-processing will emphasize narrow and thin structures.
$\rightarrow 3$ labels :

- Leaves
- Wood
- Background

1. Reduction of the color image dynamic range

From native 24-bit to 8-bit to reduce complexity

Wu, X. "Color quantization by dynamic programming and principal
analysis". In: ACM Transactions on Graphics. 11(4) : 348-372 (1992)

- PCA in the color space
- Recursive decomposition to reach a given number of colors

2. Labeling of the image

Strategy A : from the most to the less homogeneous LA

1. Sort all the LAs w.r.t. to their variance
2. Along the LAs
i. Assign the corresponding label to all the colors belonging to the LA
ii. Remove all these labelled colors to the remaining LAs.
3. Compute new variances of remaining LAs and reorder

Aberrant labelling caused by the heterogeneity of LA?

2. Labeling of the image

Strategy B : fragmenting heterogeneous LAs

0. Fragment all the LAs in subLAs by a k-means clustering to be under a maximal variance
1. Sort all the subLAs w.r.t. to their variance
2. Along the sublAs
i. For each color of the subLA, compute the distance to the current and already processed subLAs.
ii. Assign the label corresponding to the subLA with minimal distance
iii. Remove all these labelled colors to the remaining subLAs
3. Compute new variances of remaining subLAs and reorder

Better results?

Stage 3: post-processing to emphasize narrow and thin structures

- Conditional dilations of "wood" at the expense of "leaves" in order to strengthen branches

$W_{i+1}=\left\{p \in W_{i}\right\} \cup\left\{p \in L_{i} \mid S_{p, w} \not \subset L_{i}\right\}$ and $\boldsymbol{L}_{i+1}=\left\{p \in L_{i} \mid S_{p, w} \subset L_{i}\right\}$ with $\boldsymbol{W}_{\mathbf{0}}=\boldsymbol{W}, \boldsymbol{L}_{\mathbf{0}}=\boldsymbol{L}$

Stage 3: post-processing to emphasize narrow and thin structures

- Conditional dilations of "wood" at the expense of "leaves" in order to strengthen branches
- Opposite conditional dilations of "leaves" at the expense of "wood".

$$
\begin{gathered}
W_{i+1}=\left\{\boldsymbol{p} \in W_{i}\right\} \cup\left\{p \in \boldsymbol{L}_{i} \mid \boldsymbol{S}_{\boldsymbol{p , w}} \not \subset \boldsymbol{L}_{i}\right\} \text { and } \boldsymbol{L}_{i+1}=\left\{\boldsymbol{p} \in \boldsymbol{L}_{i} \mid \boldsymbol{S}_{\boldsymbol{p , w}} \subset \boldsymbol{L}_{i}\right\} \text { with } W_{0}=\boldsymbol{W}, \boldsymbol{L}_{0}=\boldsymbol{L} \\
\boldsymbol{L}_{i+1}=\left\{\boldsymbol{p} \in \boldsymbol{L}_{i}\right\} \cup\left\{\boldsymbol{q} \in W_{i} \mid \boldsymbol{q} \in S_{p, w}, \boldsymbol{p} \in \boldsymbol{L}_{i}\right\} \text { and } W_{i+1}=\left\{\boldsymbol{p} \in W_{i} \mid \boldsymbol{p} \notin \boldsymbol{S}_{q, w}, \boldsymbol{q} \in \boldsymbol{L}_{i}\right\}
\end{gathered}
$$

Stage 3: post-processing to emphasize narrow and thin structures

- Conditional dilations of "wood" at the expense of "leaves" in order to strengthen branches
- Opposite conditional dilations of "leaves" at the expense of "wood".

$$
\begin{gathered}
W_{i+1}=\left\{\boldsymbol{p} \in W_{i}\right\} \cup\left\{p \in \boldsymbol{L}_{i} \mid \boldsymbol{S}_{\boldsymbol{p , w}} \not \subset \boldsymbol{L}_{i}\right\} \text { and } \boldsymbol{L}_{i+1}=\left\{\boldsymbol{p} \in \boldsymbol{L}_{i} \mid \boldsymbol{S}_{\boldsymbol{p , w}} \subset \boldsymbol{L}_{i}\right\} \text { with } W_{0}=\boldsymbol{W}, \boldsymbol{L}_{0}=\boldsymbol{L} \\
\boldsymbol{L}_{i+1}=\left\{\boldsymbol{p} \in \boldsymbol{L}_{i}\right\} \cup\left\{\boldsymbol{q} \in W_{i} \mid \boldsymbol{q} \in S_{p, w}, \boldsymbol{p} \in \boldsymbol{L}_{i}\right\} \text { and } W_{i+1}=\left\{\boldsymbol{p} \in W_{i} \mid \boldsymbol{p} \notin \boldsymbol{S}_{q, w}, \boldsymbol{q} \in \boldsymbol{L}_{i}\right\}
\end{gathered}
$$

Discussion

- Sensitivity to the learning areas?

BLA= 3 large heterogeneous LAs
SLA $=9$ small homogeneous LAs
\rightarrow Strategy B for using BLA

- Optimal color system?
\rightarrow L*a*b* better

- Other parameters?
....found experimentally...
\rightarrow Step 1: number of colors=200
\rightarrow Step 2, strategy B, maximal variance for fragmentation=10
\rightarrow Step 3: number of conditional dilations=3

Experimental results

Samsung Galaxy 2 tablet (1 GhZ Nvidia Tegra)
35 s for a 2408×1536 pixel image

Experimental results

Samsung Galaxy 2 tablet (1 GhZ Nvidia Tegra) 35 s for a 2408×1536 pixel image

Experimental results

Samsung Galaxy 2 tablet (1 GhZ Nvidia Tegra) 35 s for a 2408×1536 pixel image

Future work

- Computing tree health parameters:
\checkmark crown transparency
\checkmark proportion of wood, leaves
\checkmark regularity of crown shape
- Improve implementation and performance
- Improve ergonomy for a practical application by a non-specialized operator
- Assess the results w.r.t. analyses by experts

cumuls verticaux

Thank you for your attention!

